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A numerical solution of the two-dimensional compressible laminar boundary-layer 
equations up to the point of separation is presented. For a particular mainstream 
velocity distribution it is necessary to specify the surface temperature (or the heat 
flux across the surface), the suction velocity, the free-stream Mach number and the 
viscosity-temperature relationship for a solution to be generated. The effect upon the 
position of separation of a hot or cold wall and of varying the free-stream Mach 
number is given special emphasis. The variations of the skin friction, heat transfer and 
various boundary-layer thicknesses for compressible flow past a circular cylinder and 
for flow with a linearly retarded mainstream were found. The behaviour of the solu- 
tions close to separation is investigated. Known functions which model the skin friction 
and heat transfer are introduced and are used to match the numerical solutions with 
the Buckmaster (1970) expansions. 

1. Introduction 
In  recent years a great deal of interest has been centred on the behaviour of the 

boundary-layer equations near the point where the skin friction vanishes. At or very 
near this point the equations appear to develop a singularity and physically the boun- 
dary layer separates. The nature of the singularity in the incompressible case is well 
known. The early work of Goldstein (1948), with further developments by Stewartson 
(1958) and Terrill(1960), has shown that the skin friction has a square-root singularity 
at  separation. Numerical investigations by Leigh (1  955) and Terrill (1 960) have 
succeeded in matching the numerical solution with the asymptotic expansion. Integra- 
tion of the boundary-layer equations beyond the point of vanishing skin friction has 
not yet proved possible except when a small bubble is allowed to develop, with a sub- 
sequent reattachment so that the more catastrophic breakaway does not occur 
(Catherall & Mangler 1966). The most recent developments have centred on free- 
streamline approaches and are reviewed by Stewartson (1975). 

The nature of the singularity in the compressible case was first studied by Stewart- 
son (1 962), who found that in order to satisfy a certain integral condition there are two 
alternatives. Either the heat transfer vanishes and the singularity is the same as in the 
incompressible case, or the heat transfer is non-vanishing and the skin friction is 
regular. When an integral condition could not be satisfied in the incompressible case 
Stewartson (1958) found that the introduction of a logarithmic term resolved the 
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difficulty. I n  this case the inclusion of a logarithmic term proved to be inconclusive. 
Numerical evidence in support of these alternatives was scarce. Poots (1960) had 
solved the equations but could not compute precise results close to separation owing to 
a lack of computing power. Williams, quoted in Brown & Stewartson (1 969), had found 
evidence of singular behaviour for both hot and cold walls. Also Merkin (1969) studied 
a free convection problem which exhibited separation and he found that for a heated 
wall the skin friction still possesses a singularity but the heat transfer does not vanish. 
I n  the light of these results Buckmaster (1 970) re-examined the equations and found 
that the integral condition could be satisfied without the restriction of vanishing heat 
transfer provided log (log) terms were included in the Stewartson expansion. However, 
a further integral condition appeared to restrict the validity of the expansion to the 
cold-wall case only. Subsequent numerical work by Werle & Senechal (1973) on sep- 
arating supersonic boundary-layer flows with linearly and quadratically retarded 
mainstreams has supported the Buckmaster expansion in the cold-wall case but has 
suggested the presence of weak singular behaviour of the  skin friction for the hot-wall 
case. However, some results which did not support the Buckmaster expansion were 
presented by Wilks (1974), who considered a separating flow in free convection about a 
semi-infinite flat plate with a prescribed heat flux a t  the wall. These results suggested 
that the singularity was that of a three-fifths power and thus pointed to a re-examina- 
tion of the original transformation used by Goldstein (1930, 1948). 

It was thus thought that further numerical evidence was necessary and so a method 
of solution has been developed which can be used to solve the equations up to the point 
of separation with various conditions prescribed, including that of suction through a 
porous wall. The equations are first transformed using part of the Illingworth- 
Stewartson transformation but the co-ordinate along the wall is left untransformed 
so that the equations do not take the usual incompressible form which leads to the 
study of similar solutions (Stewartson 1949; Cohen & Reshotho 1956). Instead, the 
equations are made non-dimensional and transformed further in such a way as to make 
them more amenable to numerical solution. This transformation also has the advantage 
of allowing the mainstream velocity to be specified in the untransformed co-ordinates, 
which means that more realistic models can be studied. 

Two particular mainstream velocity distributions have been studied. The first is 
flow with a linearly retarded mainstream, which provides a situation where there is an 
adverse pressure gradient throughout the boundary layer. The second is compressible 
flow past a circular cylinder, where the irrotational mainstream solution obtained by 
Simasaki (1956) has been used. I n  the latter case the external velocity is dependent on 
the free-stream Mach number. I n  both cases various constant wall temperatures and 
free-stream Mach numbers were specified for a model fluid whose Prandtl number 
u = 1 and whose viscosity is proportional to the absolute temperature. 

The transformation of the equations and the numerical scheme are only outlined 
here. A complete account can be found in Davies (1975) together with all the numerical 
results obtained in the study. As a check on the numerical method the known results 
of other authors were reproduced. I n  particular, a modification of the program used 
enabled a check to be made on the results obtained by Merkin (1969) and Wilks (1974). 
Merkin’s results were reproduced and more accurate results were obtained by reducing 
the step lengths. Wilks’ results appear to be in error as they could be reproduced only by 
modelling a derivative boundary condition by using a forward difference. Wilks 
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(private communication) has indicated that a central difference approximation was 
actually used. However, a more accurate boundary condition can be obtained by 
using a Taylor-series expansion near the wall and the familiar square-root singularity 
near separation was then obtained. 

Finally, an attempt has been made to use the numerical results to examine the 
behaviour of the solutions close to the point of vanishing skin friction. The method 
employed is to model the expansions for the skin friction and the heat transfer in terms 
of quantities which can be obtained from the numerical results. This is achieved by the 
introduction of three known functions whose behaviour as separation is approached 
can be used to provide guidance and re-assurance as to the nature of the expansions 
at  each stage. It is found tht  the expansion obtained by Buckmaster (1970) can be 
fitted to the numerical results not only for the cold-wall case but also for a hot wall. 

2. The equations 

dimensional, compressible boundary-layer flow are 
I n  the usual notation, for perfect fluids, the equations of motion for a steady, two- 

The energy equation is 

p u z + p v -  au au = p 1 u 1 7 + -  du1 p- 
aY x :y( ;;) 

The viscosity p is temperature dependent and using Chapman’s viscosity we have 
,u = C ( x )  T ,  where C(x)  is a suitable function of x .  

The surface over which the boundary layer flows is maintained a t  some arbitrary 
temperature T,(x). Further, if the effect of removing fluid through the surface is taken 
into account a suction velocity distribution is prescribed. The boundary conditions 
for the above equations are therefore 

u = 0, v = -(umvm/Z)*vS(x), T = T,(x) a t  y = 0, x 2 0; (4) 

u =  ul, T = Tl as y - f c o ,  x 2 0, ( 5 )  

where v,(x) is the non-dimensional velocity of suction. Application of the Illingworth- 
Stewartson transformation reduces the equations of motion to a form similar to those 
for the incompressible boundary layer. However, the transformation of the x co-ordi- 
nate has practical limitations and we omit this part of the transformation. The required 
transformations are 

p u  = P m  a w y ,  pv = - p m  a w x ,  ( 6 4  
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together with the assumption that the mainstream is homenergic. The resulting 
equations are then made non-dimensional by writing 

where R = u,E/v, is the Reynolds number and I is a representative length. Hence 
(with the dashes omitted) 

where (+ = pCJk is the Prandtl number, which is assumed to be constant, 

u, = am u&,, Cl = pm/C(x:) T m  

and H m  = ~(Y-l)M2,/[l+g(y-l)1M~l. 
The boundary conditions are 

I 

a$/~Y-t(a, /a , )u, ,  S+O as Y-+co,  x 2 0. 

The equations are now transformed to a form more amenable to numerical solution. 
For the incompressible boundary-layer equations, Terrill(l960) used a transformation 
due to Gortler. We shall use a modified form of this transformation here. Write 

where 

and obtain 
A(x) = (am/a1)(3y-1)/(~-1)u1(x) Cl(x), 

where 
2CdAldx U, d UJdx 

’(‘) = ul(x) A(x)’ G(f;) = AdA/dx 

and H(5) = (am/al)4y/(~-1)C4Hrn uf. 

The boundary conditions are 
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where K&) is the non-dimensional velocity of suction, and 

The equations at the leading edge 5 = 0 are given by setting < = 0 and replacing partial 
derivatives with respect to 7 by full derivatives. Thus, for a particular mainstream 
velocity distribution we need specify only C,(X), M,, V J X )  and S,(X) for a solution of 
the equations to be undertaken. The non-dimensional skin friction is given by 

and the non-dimensional heat transfer is given by 

Expressions Jbr the displacement thickness a,, the momentum thickness 6, and the 
enthalpy thickness 6, follow similarly. 

3. The numerical solution 
The equations are solved numerically by using the Hartree-Wormersly method. 

Derivatives in the 8 direction are replaced by differences and all other quantities by 
averages. We write q = aq5/a?. Given q1 and S, at a particular cross-section t1 we can 
find q2 and S, at C2. With v = q1 + q2, 8 = S, + S2 and, by defining a suitable iterative 
procedure, the equations become 

(W, (21) A(m)v(m+l)  = C(m),  B(m)e(m+l) = DW, 

where A ( m )  is a special matrix described by Terrill(lQ60) and B("'is a tridiagonal matrix. 
The initial profiles were found by solving (13) and (14) numerically with 6 = 0. 

However it is not possible to take 5 = 0 as the starting point for the solution as the 
above procedure does not converge there. The integration was started at E = 10" 
with an initial step of 5 x lo-'. The step length was increased as the distance away 
from the leading edge increased. 

In the 7 direction a step length h = 0.05 was taken over the range 7 = 0-10. The 
step length was then halved and the results from the two integrations were compared 
to ensure that the difference between the two solutions was less than 5 x In  the E 
direction the solution from t1 to t2 was first obtained in one step and then in two steps. 
These results were likewise compared to ensure that the difference between the two 
solutions was less than 5 x 

4. The numerical results 
The above method has been applied to two different mainstream velocity distribu- 

tions: those for flow with a linearly retarded mainstream and for compressible flow 
past a cylinder. Most results have been obtained for a model fluid with = 1 and 
C,(X) = 1 .  The adiabatic index y has been taken to be equal to 1-4 throughout. 
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The main intention has been to study the effect of heat transfer on separation and 
for this purpose a constant wall temperature and zero suction have been specified. To 
simulate a hot wall we have taken S, = 1 and for a cold wall S, = -8. Thus, for 
example, when M, = 0, S, = 1 signifies a wall temperature twice that of the free 
stream whilst S, = - 4 gives a wall temperature half that of the free stream. Results 
were also obtained with S, = 0, which is the case of an insulated wall with solution 
S = 0, and for T, = T, for non-zero Mach number, with S, chosen accordingly. The 
skin friction, the heat transfer at  the wall and the various thicknesses have been cal- 
culated.? It is expected that heating the wall will cause separation to take place 
earlier whilst cooling delays separation. This is because, in this model, viscosity in- 
creases with temperature and thus viscous forces, which enhance the retarding effect 
of the pressure gradient, are greater for a heated wall. 

Flow with a linearly retarded mainstream 

The mainstream velocity distribution is given by UJU, = 1 - Qx. Results were 
obtained for Mach numbers ranging from 0 to 1 for various S,  . Two tables of results for 
a hot wall (S, = 1) and for a cold wall (S, = - 4) respectively with Mm = 1 are presented 
as examples. 

Consider M, = 0,  so that dissipative heating does not occur. S, = 0 corresponds to 
the incompressible case and separation is predicted to occur at x, = 0.9583. Leigh 
(1955) reports x8 = 0.9585. When S, = 1 the wall temperature is twice that of the 
free stream and the skin friction is reduced, thereby moving the position of separation 
upstream to x8 = 0-5889. Conversely, cooling increases the skin friction and delays 
separation, so that, for S, = - i, x, = 1.4031. Furthermore, it was found that the dis- 
placement thickness is increased by heating the wall whilst the momentum thickness is 
decreased since the density decreases with temperature. The opposite effect occurs 
when the wall is cooled. 

If S, is held constant and M, is increased the position of separation moves upstream 
since under our transformation the wall temperature is increased. When M, = 1 and 
S, = 0,  x, = 0.8812. For a hot wall (S, = 1)  x, = 0.5240 and for a cold wall (S, = - 8) 
x8 = 1.3305. In  the cold-wall case it was found that the skin friction increases with M, 
at first but separation still takes place earlier. For M ,  = 0 the wall is colder and the 
lower viscosity very near the wall may result in a lower skin-friction coefficient 
initially. 

Compressible jlow past a circular cylinder 

The mainstream velocity distribution for the irrotationa1 flow of a compressible fluid 
past a circular cylinder has been obtained by Simasaki (1956). It consists of a power 
series in M, which converges for M, < 0.4. Results have thus been obtained for values 
of M, ranging from 0 to 0.4 for various S,. 

The pressure gradient is favourable for 0 < x < +?r, so that the fluid is accelerated. 
For x > in the pressure gradient is adverse and separation occurs. It is found that for a 
particular S, the skin friction has a behaviour similar to that of the pressure gradient. 
In all cases the effect of increasing M, is to move the position of separation upstream 
since the pressure gradient becomes more adverse. 

the Editorial Office of the Journal or directly from the authors. 
t Tables of these results for both types of mainstream flow can be obtained on request from 
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X 

0*0000015 
0~0001200 
0.01030 
0.1 
0.2 
0.3 
0.4 
0.5 
0.5237 
0.52376 
0.52386 
0.52397 
0.523984 
0.523997 
0*524002 1 
0.5240046 
0.5240050 
0.52400505 
0.62400507 

T W  

271.12 
30.308 

3.22871 
0.91315 
0.54172 
0.34884 
0.20821 
0.06936 
0.00607 
0.00531 
0.00396 
0.00198 
0.00144 
0-00088 
0.00060 
0~00020 
0~00009 
0.00004 
0~00000 

Q, 
135.56 

15.156 
1.63 142 
0.51031 
0.34795 
0.27045 
0.21741 
0.16473 
0.13110 
0.13035 
0.12889 
0.12627 
0.12537 
0.12424 
0.12355 
0.12223 
0.12166 
0.12 125 
0.12089 

4 
0.0052 
0.0467 
0.4340 
1.3932 
2.0497 
2.6377 
3.2573 
4.1051 
4.5856 
4.5916 
4.6024 
4.6183 
4.6226 
4.627 1 
4.6294 
4.6326 
4.6335 
4.6339 
4.6342 

4 
0.0008 
0.0072 
0.0676 
0.2152 
0.3121 
0.3925 
0.4661 
0.5368 
0.5535 
0.5536 
0-5536 
0.5537 
0.5531 
0.5537 
0.5537 
0.5537 
0.5537 
0.5537 
0.5537 

- 6, 
0.0012 
0.0110 
0.1019 
0.3139 
0.4380 
0.5287 
0.6007 
0.6586 
0.6698 
0.6699 
0.6699 
0.6700 
0.6700 
0.6'1 00 
0.6700 
0.6700 
0.6700 
0.6700 
0.6700 

SLI 

0.787 
0.779 
0.764 
0.733 
0.719 
0.7 0 
0.68 
0.64 
0.61 
0.6 
- 

SLa 

0.0817 
0.0761 
0.0651 
0.0450 
0.0381 
0.0293 
0.02 19 
0.0135 
0.0089 
0.0056 
- 

-HL 

0.3140 
0.3122 
0.3087 
0.3025 
0.3003 
0.2976 
0.2953 
0.2928 
0.2914 
0.2904 
0.2896 

5 

0.1039 
0.0977 
0.0852 
0.0615 
0.0530 
0.0419 
0.0323 
0.0210 
0.0146 
0.0093 
0 

TABLE 1. Retarded'mainstream with S, = 1, M ,  = 1. 

X 

0.0000015 
0~0001200 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 
1.1014 
1.2019 
1.3039 
1.32962 
1.32993 
1.33008 
1.33035 
1.330408 
1.330437 
1.330456 
1.3304621 
1.3304635 
1.33046358 

T W  

271.12 
30.31 1 
0.99809 
0.66792 
0.51350 
0.4162 1 
0.34587 
0.29068 
0.24489 
0.20525 
0.16965 
0.13653 
0.10395 
0.07049 
0.02760 
0.00443 
0.00352 
0.00297 
0.00162 
0.00114 
0.00079 
0.00043 
0~00020 
0*00006 
0.00003 

- Q, 
271.12 

30.313 
1.0421 
0.73020 
0.58991 
0.50456 
0.44477 
0.39913 
0.3621 1 
0.33060 
0.30257 
0.27650 
0.25045 
0.22245 
0.18089 
0.14623 
0.14392 
0.14238 
0.13790 
0.13589 
0.13418 
0.13189 
0.12986 
0.12798 
0.12725 

4 4 
0.0014 0.0008 
0.0128 0.0073 
0.3758 0.2123 
0.5429 0.3038 
0.6804 0.3768 
0.8058 0.4408 
0.9261 0,4996 
1.0457 0.5553 
1.1680 0.6090 
1.2960 0.6616 
1.4337 0.7138 
1.5861 0.7660 
1.7644 0.8196 
1.9834 0.8737 
2.3236 0.9304 
2.5283 0.9451 
2.5362 0.9453 
2.5410 0.9454 
2.5523 0.9455 
2.5568 0.9456 
2.5597 0.9456 
2.5628 0.9456 
2.5647 0.9456 
2.5656 0.9456 
2.5661 0.9456 

ST 
0.0002 
0.0021 
0.0604 
0.0860 
0.1060 
0-1231 
0.1385 
0.1525 
0.1655 
0.1777 
0.1892 
0.1999 
0.2101 
0.2 193 
0.2273 
0.2289 
0.2290 
0.2290 
0.2290 
0.2290 
0.2290 
0.2290 
0.2290 
0.2290 
0.2290 

SLI 

1.359 
1-355 
1.354 
1.357 
1.36 
1.36 
1.4 
1.5 
1.7 
- 

S L a  

0,1386 
0.1233 
0.1133 
0.0837 
0.0704 
0.0586 
0.0438 
0.0305 
0.0187 
- 

HL 

0.6322 
0.6223 
0.6156 
0.5962 
0.5875 
0.5801 
0.5702 
0.5615 
0.5533 
0.5502 

5 

0.1020 
0.0910 
0.0837 
0.0617 
0.0517 
0.0430 
0.0313 
0.0210 
0.0109 
0 

~ 

TABLE 2. Retarded mainstream with 8, = - 4, M ,  = 1. 
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In  incompressible flow (M, = 0, S, = 0)  separation is predicted to occur at 

X ,  = 1.8231 (104.45'). 

Terrill (1960) obtained x, = 1.8230. As expected, heating promotes separation whilst 
cooling delays separation. When S, = 1, x, = 1,7591 (100.79") and, when S, = -4, 
x, = 1.9072 (109.27'). In  the accelerated region only viscous forces oppose the motion 
and a consequence of the increase in viscosity brought about by heating is that the skin 
friction increases, whereas it decreases if the wall is cooled. Since density decreases 
with temperature a hot (cold) wall results in a larger (smaller) displacement thickness 
and a smaller (larger) momentum thickness. 

In  incompressible flow with M, = 0.4 the position of separation for an insulated 
wall (8, = 0)  is x, = 1.7327 (99.27'). When S, = 1,  x, = 1,6953 (97.13') and, when 

When the cylinder is heated overshoot occurs in the accelerated region. The fluid in 
the outer region of the boundary layer is hardly affected by the retarding influence of 
the wall and is less dense than the fluid in the mainstream. The acceleration caused by 
the pressure gradient results in the fluid moving faster in this outer region than the 
fluid in the mainstream. Overshoot does not disappear completely in the retarded 
region since the forces do not have time to reduce the velocity (in the outer region of the 
boundary layer) sufficiently before separation occurs. 

8, = -4, X, = 1.7892 (102.51'). 

5. The behaviour of the solutions close to separation 
In  order to use the numerical results to investigate the behaviour of the skin friction 

and heat transfer close to separation it is necessary to develop the Buckmaster (1970) 
expansions in terms of the non-transformed, x co-ordinate. As in $ 4  we shall assume 
that CT = 1 and C ( x )  = pco/Tm. Suction will not be considered as it has been shown that 
its effect is one of degree (Terrill 1960) and that it does not affect the nature of the 
singularity. We take as our starting point (8) and (9), which become 

( 3 ~  -IMY -1) 82s 
V m - .  123) a ~2 

a$as  a $ a s  _____ - 

The boundary conditions are 

(24) 
$ = a$/aY = 0, S = S,(X) at Y = 0,  x 2 0, 

a$/aY+(a,/al)u1, S-tO as Y-too, x 2 0. 

The equations are fist made non-dimensional and then transformed in a way 
similar to the methods employed by Goldstein (1948) and Stewartson (1962). We take 
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Rs = ulsls/v, is a Reynolds number and the suffixes s denote values at  separation. 
The resulting equations are then transformed by taking 

s = 8,s + (1 + S W S )  g(E9 7). 

Near X I  = 0 we assume that both the pressure gradient and the heat transfer at the 
wall are regular functions. Thus 

and 
g(E,O) =E4S1+EES2+..., 

where the P’s and S’s are known. We find that 

where Po = 1 and the Q’s are known. 
The boundary conditions are 

We also have the requirement that neither f nor g is exponentially large as 7 + 03. 

From now on we shall take S, = constant since the effect of variable S, is one of 
degree and will not influence the nature of the singularity. Thus S,  = S, = ... = 0. 
Under the above transformations we also have 

where 

and S, = 2 4 ,  H ,  are constants. 7, and Q, are the non-dimensional skin-friction and 
heat-transfer coefficients respectively. 

Following Stewartson (1962)  and Buckmaster (1970) we look for solutions of the 
form 

co m 

f(E,r) = C f n ( E , r ) E n ,  g ( E , r )  = I; gn(E,r)En.  
n=O n=O 

The 5 dependence off, and g, may be logarithmic. Substituting for f and g in (29 )  and 
(30) we obtain a system of equations for the fm and gn with boundary conditions 

fn(0)  =fA(0) = 0, gJ0) = 0, n = 0 , 1 , 2 ,  ... . 
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FIGURES 1 (a, b) .  For legend see facing page. 
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FIGURE 1. SLl, S,, and H ,  for flow past a circular cylinder at M ,  = 0. 
(a) s, = 0, (b) 8, = -*, (c )  S, = 1. 

Assuming that f o  and go are independent of c gives 

g;l-3f0gh = 0, f ; - 3 f o f ' j + 2 f ; 2 =  l + g o .  

From the expressions (32) and ( 3 3 )  for the velocity profile and skin friction respec- 
tively we must have f h, f ;l 2 0 since just prior to separation the flow is forward and the 
skin friction is positive. Thus f o  2 0 and, if gh(0) + 0, gh+ 00 exponentially, which is not 
allowed. Hence we must have 

go = 0, f o  = +?p. 
Before continuing with the solutions for fl and g1 some idea of their behaviour can be 
obtained by studying the numerical results near separation. We can write 

and 
(36) 

( 3 7 )  

7 ,  and Q, have been obtained numerically. Once the position of separation x, has been 
determined it is possible to calculate I,, H ,  and S,. For a particular value of x we can 
calculate 6,  SLl, SL2 and HL. The functions SL1, HL and SL2 have been tabulated near 
6 = 0 in tables 1 and 2 and profiles have been drawn in figures I ( a ) ,  ( b )  and ( c )  for flow 
past a circular cylinder with M, = 0 and S,  = 0, - & and 1 respectively. For S, = 1 
the modulus of HL has been drawn. When such curves are drawn for other values ofMm 
given in the tables the behaviour of the curves remains unchanged. Also the curves for 
a linearly retarded mainstream exhibit the same behaviour. 
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Near 5 = 0, S,, and S,, are sensitive to the values of r, and x. Changes in the fifth 
decimal place for r, or in the eighth decimal place for x can have a marked effect on the 
values of SL1 (in particular) and SL2. As a result SL1 could be calculated to only one 
decimal place very near c = 0 and even so the last figure is unreliable. However, reliable 
bounds for S,, near [ = 0 have been obtained by allowing for rounding errors in both 
T, and x. The results are important in indicating general trends infi(c, 0). 

Consider first the smooth curves for SL2 which pass through the origin in all cases. 
The behaviour for both hot and cold walls is similar to that for S,  = 0 andill, = 0 (the 
incompressible case), suggesting that the familiar square-root behaviour of the skin 
friction is reproduced. 

HL also describes smooth curves in all cases with heat transfer. It appears that 
g;(O, 0 )  = constant; that is, the heat transfer does not vanish at  separation. 

The curves for S,, shed further light on the behaviour off;(& 0).  The curves have not 
been continued to 5 = 0 because the results are imprecise there. However, the general 
trend of S,, near = 0 can be seen from tables 1 and 2. For a cold wall (S, = - 4) we 
note that S,, decreases at first as E-+ 0 and near 6 = 0 begins to  increase. For a hot wall 
(S, = l), SL1 decreases as [-. 0 and the rate of decrease becomes more rapid as the 
origin is approached. When S, = 0 and M, = 0,  S,, decreases steadily as g-+ 0. 

With the above results in mind the solutions obtained by Stewartson (1 962) and 
Buckmaster (1 970) may be considered. The expansions for further fn and g n  are lengthy 
and for further details the reader is referred to the original papers. In  Buckmaster’s 
notation the leading terms of the skin friction are 

where 
E2( 2a,, log E + 2011, + . . . ), (38) 

- B, 2nq - a) ! 
a10 = 64(f ! )3  9 91 = 4 7 .  (39) 

Buckmaster reasoned that, as the skin friction is positive just prior to separation, 
alo must be negative. Thus B, > 0, which implies that the wall is cold. 

In the incompressible case it is possible to match the numerical results with the 
expansions for the skin friction and velocity profile at  separation. This determines a 
constant a, which corresponds to the constant a,, for the compressible case (see Jones 
1948; Leigh 1955; Terrill 1960). The expansions are of practical use to fourth order for 
the skin friction and to fifth order for the velocity profile. In  the compressible case the 
expansions are unwieldy to use in practice and only a rough match can really be 
attempted. Furthermore, it is almost impossible to match the velocity profile as the 
presence of logarithms in fl means that the variables 6 and 7 cannot be combined to 
permit a transformation back into Y‘;  neither can we set 6 = 0. A small value of 6 
could be chosen but then the variable 7 becomes large, making the evaluation of 
functions such as g2(q) impractical. 

With the above reservations, an attempt has been made to match the skin friction 
and heat transfer with the values obtained from numerical results. We use 
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Compresaible $ow past a czrculnr cylinder 

0 0 0.67 0 
0 - 9  0-72 0.395 
0 1 0.64 - 0.161 
0.4 - 9  0.88 0.444 
0.4 1 0.86 - 0.170 

Linearly retarded mainstream 
0 0 0-51 0 
0 -9 0.60 0.583 
0 1 0.48 - 0.297 
1 -*  0.52 0.543 
1 1 0.44 - 0.288 

TABLE 3 

M ,  8, 0111 Bl 

where a,, = ( -  0.091148) B,, aI2 = ( -  0,386294) a,,, a13 = (0.149223) a,, and &(O) = 
-1.111552. Hence 

SL2 = 5(2alologE + 2a,, + 2a12 log \log51 + 2a13 log llogE\/log5 + . . .) ( 40) 
and 

HL = B, -5~~(O)B,(2a,,log5+2a,, +2a12log Ilog5l 

+2al,1og \ log(\ / log~i-  ...)+...). (41) 

The right-hand sides of the above equations have been evaluated for various com- 
binations of all and B, near 5 = 0.01 and the results have been compared with those for 
SL, and HL obtained numerically. The use of (40) and (41) has not been restricted to the 
cold-wall case and it is the results for the hot wall which are important. I n  table 3 we 
list the values all and B, for the specific cases considered. 

For both a,, and B, the last figure is unreliable. However, using the fuller series in 
the incompressible case (Moo = 0, S, = 0) the values obtained for the constant a1 were 
as follows: for incompressible flow past a cylinder a, = 0.673 (Terrill (1960) found 
a, = 0.677); for flow with a linearly retarded mainstream a, = 0.502 (Leigh (1955) 
found a, = 0.492). No difficulty was encountered in using the expansions for a hot wall. 
The crux of the matter is: when does (38) become negative? From (39), a,, is approxi- 
mately O-lB, and lBl\ can be seen to be smaller than a,, for a hot wall. Before (38) 
becomes negative < must be very small ( < But xs-x = ZSE4 and the distance 
between x and separation before (38) becomes negative is extremely small. 

The results for S,, also seem to indicate that the expansion is still valid for a hot wall 
with the appropriate logarithmic behaviour. We noted that, as (+ 0, S,, decreased 
more rapidly, which is due to the effect of the logarithmic term as f -+ 0. Conversely, 
for a cold wall the logarithmic term would tend to increase S,, as E+ 0. Nevertheless, 
it does appear from the figures that the curve for S,, will cross the ( axis before 5 = 0 
in the hot-wall case. It is impossible to determine this absolutely since the computation 
of more accurate values of S,, close to ( = 0 requires that 7, be calculated accurately 
to more decimal places. Also the value of xs, which gives the origin for (, would need to 
be calculated to more decimal places. This whole process would require the use of 
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double-precision arithmetic and some thought is currently being given to attempting 
this. With this reservation in mind, however, it does appear from the graphs that the 
skin friction behaves, close to 6 = 0, in the manner suggested by the Buckmaster 
expansion for both hot and cold walls. 
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